

Networked Sensors for the Objective Force

"No Place To Hide"

Mr. John Eicke

U.S. Army Research Laboratory

Objective

Demonstrate a family of low cost sensors utilizing a wide range of sensor types, to enable overarching situational awareness & provide a common operational picture across all echelons of the future Army.

Networks of ubiquitous, low cost sensors can "see" where we currently cannot!

Networked Sensors: Technology Enablers

What's the Concept?

What Does All This Mean to the Warfighter?

- High fidelity sensor information for
 - Targeting
 - Threat detection
 - Battle damage assessment

- Affordable, organic sensing at the small unit & soldier level
- Multi-mission target & threat information for a wide range of needs
- Integrated with other sensors to provide a more complete picture of the environment

Name that tune!

Acoustic / Seismic Sensors

- 360°, NLOS monitoring
- Classifies target
- May ID target
- Provides LOB to targets
- Multiple nodes locate targets
- Detect & ID
 - Vehicles
 - Helicopters
 - Artillery, mortar, gunfire
- Excellent cueing for imagers

Magnetic Sensors

- 360°, NLOS monitoring
- Very low cost
- Very simple
- All weather
- Detect
 - Vehicles
 - Small arms
- Excellent tripwire sensor to cue other sensors

Magnetic Sensor Sensitivity

IR Sensor

- Low cost imager
- Low power / size
 - 90 grams (including optic)
 - 600 mW @ 3.5V
- Excellent target identification

Detection of Walking Man Target

	Sensor Field of Regard/Range	
FPA	40° FOV	15° FOV
160x120	FOR = 164m/ Range= 240m	167m/ 640m
320x240	328m/ 480m	334m/ 1280m

Target: Walking Man (0.75m/2.0° C) 50% Detection/0.75 cycles on target

Atmosphere: 80%/km

Moving Target Indicator (MTI) Radar Sensor

- 360°, NLOS monitoring
- Low cost
- Small, low power
- Detection of moving targets based on Doppler
- Excellent target range information out to > 500m
- Concepts based on Army proximity fuzes
- Simple- multi range cell design

RF Energy Sensor

- Low cost
- Non-line of sight
- Small, low power
- Detection of unintentional RF emissions such as engine noise
- Detection & classification of intentional radio signals

Sensor Fusion

Sensor Fusion Results

Communications

- Provide robust communications in highly energy & <u>bandwidth-constrained</u> environment
- Self-organizing ad hoc networks adapting to:
 - Various delivery mechanisms
 - Node failures
 - Intermittent connectivity
 - Mobility
- Operate over noisy wireless channels
 - Local short haul radios
 - Long haul radios
- Protection of the sensor information while forwarddeployed & under energy/bandwidth constraints

Radios

- Short Haul inter-cluster "Blue"
 - Short range 400 meters
 - Low bandwidth <10Khz
 - Self-configuring, energy-aware
 - ComSec, LPI/LPD, anti-jam
 - Receiver energy can dominate power budget!

- Selectable bandwidth 1 khz data to video
- Long range 10 km or more
- ComSec, LPI/LPD, anti-jam

Self-Configuring Routing & Control

- Linked Cluster Ad Hoc Routing Algorithm
 - Network self-organizes under a variety of delivery mechanisms & without prior knowledge of network
 - Adapts to mobility, channel effects, node destruction or failure
 - Energy-aware routing & reconfiguration

Control Architecture

- Autonomously establishes & maintains the sensor network
- Supports range of operational scenarios
- Enables low-overhead security

Modified Ephremides Linked Cluster Routing Algorithm

Node Employment

- Hand emplaced
- Artillery / mortar
- Aircraft / helicopters
- Mine dispensers
- Autonomous platforms
 - Small robots
 - Small UAVs

Small, autonomous platforms will allow sensors to position themselves to optimize sensing and/or communications

Tradeoffs: "The 3 B's"

Performance tradeoffs within nodes are complex & require a careful consideration based on the application

Networked Sensor Applications

Perimeter Defense

Targeting

Personnel Detection

MOUT Operations

Networked Sensors for the Objective Force ATD

Distributed Sensors Fill the Battlefield Situational Awareness Gap and Provide BLOS Targeting

- Complement Global Surveillance -

Benefits of the Approach

- Provide warfighter with <u>organic</u> capabilities down to individual level
- Internetted, multi-sensor approach insures robust, reliable target information
- Range of employment mechanisms (hand, air, munitions, robots) enables diverse uses
- Range of low cost technologies will allow their rapid re-use to meet new requirements

Callenges

- Communications
 - Energy-efficient, miniature radios
 - Energy-aware, ad hoc networking
- Processing
 - Power conservation
 - Sensor & data fusion
- Sensors
 - Acoustic, seismic, magnetic not mature
 - New sensing modalities ?
- Cost reduction
 - Highly integrated electronics
 - Packaging

The Bottom Line

- Many of the enabling technologies already exist
- Key challenges remain
- Up front integration of all elements of nodes are needed to be successful
- All services will benefit from fielding networked unattended sensors

Not an <u>evolution</u>, but . . . a <u>revolution</u> in battlefield sensing